SILICON PLANAR EPITAXIAL OVERLAY TRANSISTORS

The 2N3924 is an n-p-n overlay transistor in a TO-39 metal envelope with the collector connected to the case. The 2N3926 and the 2N3927 are n-p-n overlay transistors in TO-60 metal envelopes with the emitter connected to the case.
The transistors are intended for v.h.f. transmitting applications.

QUICK REFERENCE DATA

R.F. performance at $V_{C E}=13,5 \mathrm{~V} ; \mathrm{f}=175 \mathrm{MHz}$

type number	$P_{0}(W)$	$P_{i}(W)$	$7(\%)$
2N3924	4	<1	>70
2N3926	7	<2	>70
2N3927	12	<4	>80

MECHANICAL DATA

Dimensions in mm
Fig. Ia TO-39/1; collector connected to case

2N3924

Maximum lead diameter is guaranteed only for 12.7 mm .

2N3924

2N3926
2N3927

MECHANICAL DATA (continued)

Dimensions in mm
Fig. 1b TO-60 (2N3926 and 2N3927).
Emitter connected to case.
The top pins should not be bent.

Torque on nut: $\min . \quad 0,8 \mathrm{Nm}(8 \mathrm{~kg} \mathrm{~cm})$
$\max , 1,7 \mathrm{Nm}(17 \mathrm{~kg} \mathrm{~cm})$
Diameter of clearance hole in heatsink: $4,8 \mathrm{~mm}$ to $5,2 \mathrm{~mm}$.
PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	$\mathrm{V}_{\text {CBO }}$	max.		36	V
Collector-emitter voltage					
$\mathrm{I}_{\mathrm{C}} \leqslant 400 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{BE}}=1,5 \mathrm{~V}$	$V_{\text {CEX }}$	max.		36	V
(open base); IC $\leqslant 400 \mathrm{~mA}$	VCEO	max.		18	v
Emitter-base voltage (open collector)	$V_{\text {EBO }}$	max.		4	V
Collector current			2N3924	2N3926	2N3927
d.c.	${ }^{1} \mathrm{C}$	max.	0,5	1,0	1,5 A
peak value	ICM	max.	1,5	3,0	4,5 A
Total power dissipation					
Storage temperature	$\mathrm{T}_{\text {stg }}$			to +200	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	max.		200	${ }^{\circ} \mathrm{C}$

2N3924
2N3926
2N3927

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

CHARACTERISTICS

$T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector cut-off current

$$
\begin{array}{ll}
\mathrm{I}_{E}=0 ; \mathrm{v}_{\mathrm{CB}}=15 \mathrm{v} & \mathrm{I}_{\mathrm{CBO}} \\
\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{v}_{\mathrm{CB}}=15 \mathrm{v} ; \mathrm{T}_{\mathrm{j}}=150{ }^{\circ} \mathrm{C} & \mathrm{I}_{\mathrm{CBO}}
\end{array}
$$

Breakdown voltages
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{L}_{\mathrm{C}}=250 \mu \mathrm{~A}$
${ }^{1} \mathrm{C}$ up to 400 inA $-V_{B E}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{B}}=33 \Omega^{1}$) $I_{B}=0$
$\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{~A}$
Base-emitter voltage
$\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Saturation voltage
$I_{C}=250 \mathrm{~mA} ; I_{B}=50 \mathrm{~mA}$
$I_{C}=500 \mathrm{~mA} ; I_{B}=100 \mathrm{~mA}$
$I_{C}=1000 \mathrm{~mA} ; I_{B}=200 \mathrm{~mA}$

	2N3924 $R_{\text {th j-mb }}$ 2N3926	2 N 3927		
$R_{\text {th mb-h }}$	$=$	25	15	7.5
$\mathrm{~K} / \mathrm{W}$				
	0.6	0.6	$\mathrm{~K} / \mathrm{W}$	

Collector cut-off current		2N3924	2N3926	2N392	
$\mathrm{I}_{E}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}$	$\mathrm{I}_{\text {CBO }}$	<100	100	250	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {CBO }}$	<5	5	10	mA
Breakdown voltages					
$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{L}_{\mathrm{C}}=250 \mu \mathrm{~A}$	$v_{(B R) C B O}$	>36	36	36	V
${ }^{\mathrm{I}} \mathrm{C}$ up to 400 mA $\begin{aligned} -\mathrm{V}_{\mathrm{BE}} & \left.=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{B}}=33 \Omega \mathrm{l}^{1}\right) \\ \mathrm{I}_{\mathrm{B}} & =0 \end{aligned}$	$v_{\text {(BR)CEX }}$ $\mathrm{v}_{\text {(BR) }}{ }^{\text {a }}$ ($\begin{array}{ll}> & 36 \\ > & 18\end{array}$	36 18	36 18	V
$\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\text {(BR)EBO }}$	>4	4	4	V
Base-emitter voltage					
$\mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	V_{BE}	<1.5			v
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {BE }}$	$<$	1.5		V
$\mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=5 \mathrm{~V}$	V_{BE}	$<$		1.5	v
Saturation voltage					
${ }^{I_{C}}=250 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$	<0.75			v
$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=100 \mathrm{~mA}$	$V_{\text {CEsat }}$	$<$	0.75		V
$\mathrm{I}_{\mathrm{C}}=1000 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=200 \mathrm{~mA}$	$V_{\text {CEsat }}$	$<$		1.0	v

